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ABSTRACT

This study concerns variation in the realization of
/t/ in Danish. /t/ is prominently affricated in Mod-
ern Standard Danish, but affrication is known to
have been missing in some of the regional varieties
that used to be spoken in Jutland. It remains un-
clear exactly which varieties lacked affrication. Due
to relatively recent major changes in language pol-
icy and mobility, the traditional Danish dialect land-
scape has undergone rapid levelling, so we explore
this problem using a large corpus of recordings of
elderly speakers from the 1970s. We propose us-
ing the functional extension of principal component
analysis to decompose the sources of spectral vari-
ance in stop release midpoints, and use the results as
a proxy for determining affrication status. We find
that /t/ affrication was limited to parts of eastern Jut-
land, perhaps due to early adaptation of the feature
in some of the area’s largest cities.

Keywords: Danish, functional PCA, regional varia-
tion, spectral decomposition, stop affrication

1. INTRODUCTION

The aims of this study are twofold: 1) to explore the
geographical distribution of (missing) /t/ affrication
in traditional varieties of Jutland Danish (see Fig.
1), and 2) to explore the use of functional principal
component analysis (FPCA) [1] for compressing the
information in speech spectra into a small number of
easily interpretable discrete variables.

In Modern Standard Danish (MSD), /p t k/ are
voiceless aspirated, and /t/ in particular is promi-
nently affricated [2, 3, 4]. Until relatively recently,
the majority of the Danish speech community spoke
traditional dialects [5], but in the past century, ram-
pant standardization has largely led to the levelling
of these varieties [6]. An overt feature of some Jut-
landic varieties was the use of a variant of /t/ with-
out salient affrication, which is known colloquially
as tørt t ‘dry t’ [7]. There is no consensus about
which Jutlandic varieties lacked affrication. Sources
have variously claimed that it was missing from all

Figure 1: Map showing the areas associated with
the two primary Danish dialect groups.

Jutlandic varieties [8], Northern Jutlandic [9], West-
ern Jutlandic [10], or all varieties except Eastern Jut-
landic [11]. We explore this mystery using a large
legacy corpus of sociolinguistic interviews which
was explicitly recorded to document the traditional
language and culture of rural Denmark [12, 13].
These recordings (particularly the ones from Jut-
land) largely preserve a stage of language variation
unaffected by the recent wave of standardization.

The acoustics of alveolar frication and aspiration
are well-understood. In alveolar frication, a jet of
air impinges on a hard surface (the upper front teeth)
immediately in front of the coronal constriction, re-
sulting in noise in a broad range of high frequen-
cies (mainly above 4 kHz) [14]. In aspiration, lower
frequency turbulence noise in a narrower frequency
range (mainly below 1 kHz) is generated at and near
the glottis [15]. This noise is filtered through the
supraglottal cavity, where the resonance frequencies
of the following vowel significantly affect the result-
ing noise. Analyzing how these spectral characteris-
tics vary regionally is not at all straightforward.

Spectral moments are commonly used to decom-
pose spectra generated from aperiodic portions of
speech. The spectral mean, or center of gravity
(COG) [16], is a particularly popular measure. Since
spectra rarely resemble Gaussian distributions, the
mean frequency alone is not very informative with
respect to overall shape; furthermore, studies have



found conflicting evidence about which spectral mo-
ments (if any) can be used to consistently determine
noise sources [17, 18]. Several other measures have
been proposed for decomposing aperiodic spectra
[19, 20, 21], but none have been as influential as
COG.

For the reasons outlined above, we do not use
spectral moments here. Instead, we adopt FPCA
as an alternative method. FPCA is used to deter-
mine the main sources of variance in curves with-
out imposing predetermined shapes. This makes it
particularly suitable for exploratory work. Each re-
sulting principal component (PCi) corresponds to a
source of variance relative to the average spectral
shape, and each individual spectrum gets a score si
for each PC indicating how well it corresponds to
this source of variance. These scores can then be
fitted to conventional statistical models; here, we
fit PC scores to spatial generalized additive mixed
models (GAMMs) [22] in order to test whether any
of the variance in spectral shape is geographically
determined. These models also include a range of
phonetic contextual predictors. The influence of
phonetic contextual predictors largely pattern as pre-
dicted, which we take as an indication that FPCA
is indeed a suitable tool for decomposing spectra.
FPCA has previously been used to analyze various
time-varying phonetic measures, such as F0 and for-
mants [1, 23]; to our knowledge, it has not previ-
ously been used to analyze speech spectra.

2. METHODS AND MATERIALS

2.1. Recordings

Our materials consist of sociolinguistic interviews
with elderly speakers of traditional regional varieties
recorded between 1971–1976 [13, 24]. Interviews
were conducted with informants in 230 parishes in
Jutland, of which 213 were used in this study. 23%
of the informants are women. Informants’ median
year of birth is 1896 (range 1871–1927). The ge-
ographical distribution of informants can be seen
in Fig. 2 (which shows the location of Djursland
for reference.) In spite of the large scope of these
recordings, they have not been used for systematic
research until very recently [7, 25].

2.2. Acoustic processing

5,169 /t/ releases were manually segmented. The re-
lease burst and the onset of periodicity were used as
delimitation landmarks, as identified from the wave-
form. Using Praat [26], 5 ms snippets were extracted
from the midpoint of each /t/ release, filtered to in-

Figure 2: The geographical distribution of record-
ings used in this study.

clude only frequencies between 0.5–12.5 kHz. For
each of these, multitaper spectra were generated in R
[27] following the method described in [28]. Inten-
sity values were log-transformed and standardized
in order to keep all spectra on the same scale. Mea-
surements at frequencies > 8 kHz were not included
in the analysis, as they did not contribute much to
the analysis other than noise.

2.3. Statistical analysis

All statistics were calculated in R [27]. The pack-
age fdapace [29] was used for FPCA. Spectra were
smoothed using a local linear smoother with pa-
rameters set automatically using generalized cross-
validation. Five PCs are needed to account for 95%
of spectral variance. We focus on the first three
PC1–3, which account for 85.9% of the variance.

PC scores s1–3 served as dependent variables in
separate GAMMs with the following maximal struc-
ture: si ~ LON,LAT + HEIGHT + STRESS + SEX
+ BACK + ROUND + PALATALIZATION + VOT.
(HEIGHT, ROUND, BACK, and STRESS refer to fea-
tures of the following vowel; SEX refers to the sex
of the speaker.) Most of these features have been
shown to affect spectral shape in MSD stop releases
[4]. There were various phonological palataliza-
tion rules in different Jutland Danish varieties [30];
we make no distinction between different sources of
palatalization. All categorical variables are contrast
coded [31]; the HEIGHT variable tests two Helmert
contrasts, viz. ‘high vs. non-high’ and ‘low vs. mid’.
All other categorical variables are binary and coded
with sum contrasts. The VOT variable is standard-



ized. By-speaker random slopes were included for
each variable except SEX. The geographical vari-
able LON,LAT is modelled with two-dimensional
thin plate regression spline smooths [32]. GAMMs
were fitted using the package mgcv [33]. The pack-
ages itsadug [34] and mgcViz [35] were used for
health checks and visualizations of the models.

The source material is spontaneous speech, so the
data are rather imbalanced: 41.9% of /t/ tokens were
followed by non-high vowels, of which 15.4% were
low. 33.7% of tokens were found in stressed sylla-
bles. 11.5% of tokens were followed by back vow-
els, and 22.7% were followed by rounded vowels.
Only 2.5% of the tokens were palatalized.

We used a step-up model selection procedure,
adding variables in the order given above (based on
these variables’ influence on MSD /t/ release spectra
[4]). Variables were only kept if the cost of fitting
a more complex model was sufficiently outweighed
by an improved model fit, as determined with like-
lihood ratio tests [36]. Data and annotated analysis
code are available online [37]. More details of the
study are available in my dissertation [38].

3. RESULTS

PC1 accounts for 58.4% of spectral variance, PC2
accounts for 18.2%, and PC3 accounts for 9.3%. The
variance explained by PC1–3 is visualized in Fig. 3.
The plots all show the mean spectrum and the shape
of the mean spectrum when weighted by the first and
third quantile of all PC scores. This gives an indica-
tion of what spectra with a relatively high score si
and a relatively low si look like.

The average spectrum has little energy below 1.5
kHz, relatively high amplitude at frequencies be-
tween 1.5–4.5 kHz, gradual energy loss above that,
and peaks just below 2.5 kHz. The main source of
variance, captured by PC1, is the location and mag-
nitude of the primary peak. Positive s1 corresponds
to a lower frequency peak, and generally more en-
ergy at lower frequencies. COG would likely have
captured some of the same information as PC1, but
they are not equivalent: in addition to the location of
the peak, PC1 also captures information about vari-
ance in spectral slope, peak amplitude, and skew.
Given what we know about aspiration and alveolar
frication, strong negative s1 seems to represent an
alveolar noise source, and strong positive s1 seems
to represent a glottal noise source. PC2 captures
variance in the magnitude of the main peak. Posi-
tive s2 corresponds to a more prominent peak, and
less energy at higher frequencies, while negative s2
corresponds to a less prominent peak, and more en-

Figure 3: Variance in release spectra captured by
PC1–3 and the effect of weighting the mean by
high and low scores s1–3.

ergy at higher frequencies. PC3 mostly captures in-
formation about the peakedness of the energy distri-
bution. Positive s3 corresponds to a more restricted
and more prominent peak in the same location as in
the mean spectrum, and negative s3 corresponds to a
broader distribution of energy.

The GAMM modelling s1 was fitted with all can-
didate independent variables except STRESS. This
model has a medium strong effect size of R2 = .39.
A likelihood ratio test found that a model includ-
ing the geographical variable LON,LAT performed
significantly better than a nested model without this
variable, with χ2(3) = 4.1, p = 0.043. The influence
of the geographical variable is plotted on a map in
Fig. 4; Fig. 4 shows that negative s1 is common in
Djursland and the surrounding area in mid-eastern
Jutland (see Fig. 2); we return to this below. All
other variables also significantly influence s1 (see
Table 1). The upshot is that there is less energy at
high frequencies before non-high, particularly low,
vowels; before rounded vowels; before back vow-
els; in non-palatalized releases; and in tokens from
male speakers. Finally, there is an inverse relation-
ship between VOT and s1, such that shorter VOT



corresponds to higher s1. These are all expected pat-
terns, similar to what is found in MSD [4].

Figure 4: Fitted s1 values attributable to area.

est. SE t p
intercept -1.42 1.38 1.03 0.3
height

- non-high, + high -3.65 0.74 -4.96 <.001
- low, + mid -4.38 0.91 -4.84 <.001

round
- rd, + non-rd 3.47 0.97 3.58 <.001

back
- back, + non-back -3.91 1.21 -3.22 <.01

palatalization
- non-pal., + pal. -6.79 2.03 -3.35 <.001

sex
- female, + male 6.26 1.87 3.35 <.001

VOT -2.03 0.69 -2.95 <.01

Table 1: Parametric coefficients of GAMM mod-
eling s1.

Fewer variables contribute to the GAMM model-
ing s2: HEIGHT, ROUND, STRESS, and BACKNESS.
The geographical variable LON,LAT does not signifi-
cantly improve the fit of this model. The final model
has a medium effect size, with R2 = .29. Only two
variables significantly influence s2, namely BACK

with β̂ = 1.97, SE = 0.7, t = 2.82, p < .01, and
ROUND with β̂ = 2.21, SE = 0.61, t = 3.6, p < .001.
In other words, positive s2, associated with an espe-
cially prominent energy peak around 2.5 kHz, is es-
pecially found before non-back and non-round vow-
els. This is also in line with previous findings for
MSD [4].

All parametric candidate variables contribute to
the GAMM modeling s3; the geographical variable
does not significantly improve the fit of this model.
The resulting model has a medium small effect size

of R2 = .25. The only variable found to significantly
influence s3 is ROUND, with β̂ = 2.62, SE = 0.45, t
= -5.84, p < .001.

4. DISCUSSION AND CONCLUSIONS

Spectral shapes that suggest a coronal noise source
are found in /t/ release midpoints in the varieties of
eastern Jutland, particularly in Djursland, but not in
other traditional varieties of Jutland Danish. This
suggests that /t/ affrication was not historically a fea-
ture of most varieties of Jutland Danish.

Indeed, it is possible that /t/ affrication was not a
feature of any traditional Jutlandic varieties. South-
ern Djursland coincides with the main water route
between Jutland and the island of Zealand, which
is where the capital (Copenhagen) and consequently
the locus of Standard Danish is located. This is also
where the largest city of Jutland (Aarhus) is located,
and several of the major historical cities of Jutland
are located immediately south of Aarhus [7]. Af-
frication may be a traditional feature of this area, but
the feature may also have spread early from Stan-
dard Danish to Aarhus and from there to adjacent
rural areas. This would be in line with the cascade
model of interdialectal influence [39], which pre-
dicts that change spreads between population cen-
ters in a manner that is predictable from a combi-
nation of population size and geographical distance,
thus also affecting rural areas close to major cities
relatively early.

PC1 and PC2 capture the two most readily inter-
pretable sources of variance in the release midpoint
spectra: the location and relative magnitude of the
energy peak. PC1 seems to largely capture the differ-
ence between aspiration and affrication noise, which
is modulated by both geography and phonetic con-
text; lower PCs seem to capture effects of coartic-
ulation, and these do not differ substantially across
regional varieties. The influence of phonetic con-
text on PC1–2 is largely predictable, and is similar
to what has been shown for MSD [4]; for example,
the main peak is usually found at higher frequen-
cies before high, non-back, and non-round vowels,
in palatalized tokens, in stressed syllables, and in fe-
male speakers. The fact that these contextual pho-
netic effects all behave as expected are an indication
that FPCA can indeed be fruitfully used to decom-
pose variance in spectral characteristics. A possible
venue to explore in future research would be using
FPCA to decompose variance in the trajectories of
spectral measures over the time course of stop bursts
and releases.
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